Distributional Limits of Riemannian Manifolds and Graphs with Sublinear Genus Growth
نویسندگان
چکیده
In [4] Benjamini and Schramm introduced the notion of distributional limit of a sequence of graphs with uniformly bounded valence and studied such limits in the case that the involved graphs are planar. We investigate distributional limits of sequences of Riemannian manifolds with bounded curvature which satisfy certain condition of quasi-conformal nature. We then apply our results to somewhat improve Benjamini’s and Schramm’s original result on the recurrence of the simple random walk on limits of planar graphs. For instance, as an application give a proof of the fact that for graphs in an expander family, the genus of each graph is bounded from below by a linear function of the number of vertices.
منابع مشابه
Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملRicci Curvature and Convergence of Lipschitz Functions
We give a definition of convergence of differential of Lipschitz functions with respect to measured Gromov-Hausdorff topology. As their applications, we give a characterization of harmonic functions with polynomial growth on asymptotic cones of manifolds with nonnegative Ricci curvature and Euclidean volume growth, and distributional Laplacian comparison theorem on limit spaces of Riemannian ma...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012